GENETIC PROGRAMMING:
PROGRAMMING COMPUTERS BY
MEANS OF NATURAL SELECTION

WEDNESDAY — JUNE 4, 1997
PASADENA

JOHN R. KOZA

Consulting Professor
Computer Science Department and Symbolic Systems Program
258 Gates Building
Stanford University
Stanford, CA 94305 USA
E-MAIL: Koza@Cs.Stanford.Edu
PHONE: 415-941-0336
FAX: 415-941-9430
WWW: http://www-Cs-
faculty.stanford.edu/~koza/

OUTLINE

« Background on Genetic Algorithm

» Genetic Programming
« Example of GP
o Automatically Defined Functions (ADFS)
« Memory, State, Mental Models, Data
structures
e [teration and recursion
» Evolutionary Selection of Architecture
« Evolution of Architecture using
Architecture-Altering Operations
* Implementation on parallel computer
« Rapidly Reconfigurable field-programmable
gate arrays (FPGAs) and evolable hardware
* Implementation of GP in assembly code
 Cellular encoding (Developmental GP)
e Selected problems where GP is competitive
with human solutions
« Automated design of analog circuits
e Promising application areas for GP
* Directions for possible future research
« Bibliography, conferences, E-Mall lists,
WWW and FTP sites

THE GENETIC ALGORITHM (GA)

 The genetic algorithmis a mathematical
algorithm that transforms a set (population)
of mathematical objects (typically fixed-
length binary character strings), each with an
associated fitness value, into a new set (new
generation of the population) of offspring
objects, using operations patterned after
naturally-occurring genetic operations and
the Darwinian principle of reproduction and
survival of the fittest.

EXAMPLE (POPULATION OF 4 STRINGS
OF LENGTH 3 OVER ALPHABET OF

SIZE 2)
Generation 0 Generation 1
Individuals Fitness Offspring
In Population Measure Population

011 $3 111

001 $1 —> 010
110 $6 110
010 $2 010

GENETIC ALGORITHM

Run:=0
v

A/

FLOWCHART FOR THE BASIC

End

Yes

Gen = e

Create Initial Randon
Population for Run

Run := Run +]

(S

f

—— —~.Yes]
»Cl'erm.lnz_atlon Crlter% Designate
Satisfied for Run? Result for Rup

Apply Fitness Measure to Individual in the Population

—

NO = v e i=i+1

i=0 Yes

’:

Yes
Gen:=Gen+ Il ((i=M?)& i=i+1
]

v

(Select Genetic Operatipn

PR

Select One Individu gL

Based on Fitness

No

Perform Reproductigre

Copy into New
Population

Select Two Individual 5 3

Based on Fitness

Perform | . Insert Offspringy

Crossover into New

1=

Population

Select One Individu_>
| Based on Fitness

Perform Mutation H»{ Insert Mutant into

New Population

PROBABILISTIC SELECTION

INDIVIDUALS ARE SELECTED TO
PARTICIPATE IN THE GENETIC
OPERATIONS BASED ON FITNESS

 Better individuals are usually chosen

* The best individual is not necessarily chosen
« The worst individual is not necessarily
excluded

* Thus, there is SOME greedy hill-climbing
e But, there Is considerable selection of
Individuals that are the INFERIOR nased on

the current evidence of the search

 Resembles simulated annealing
» Unlike almost everything else

THE PROBLEM OF AUTOMATIC
PROGRAMMING (PROGRAM
SYNTHESIS)

"How can computers learn to solve problems
without being explicitly programmed? In
other words, how can computers be made to
do what is needed to be done, without being
told exactly how to do it?"

---Attributed to Arthur Samuel - about 1959

AUTOMATIC PROGRAMMING

"WYWIWYG" —"WHAT YOU WANT IS
WHAT YOU GET"

* Produces an entity that runs on a computer
(l.e., a computer program or something that
IS easily convertible into a program)

e Requires a minimum of user-supplied
iInformation

» Solves a broad variety of problems
 Scalability to larger problems

 Implements all the familiar programming
constructs — parameterizable subroutines,
memory, iteration, recursion, data structures
 Doesn't require the user to prespecify the
size and shape of the solution

« Doesn't require the user to identify
subgoals, handcraft operators, decompose
the problem, or intervene interactively
during the run

* Produces some results that are competitive
with human performance by programmers,

designers, or mathematicians or that are
publishable in their own right

* |Is well-defined, has no hidden steps, and
produces replicable results

GENETIC PROGRAMMING (GP)

"Genetic programming IS automatic
programming. For the first time since the
idea of automatic programming was first
discussed in the late 40's and early 50's, we
have a set of non-trivial, non-tailored,
computer-generated programs that satisfy
Samuel's exhortation: Tell the computer
what to do, not how to do it." "

— John Holland, University of Michigan, 1997

FIVE MAJOR PREPARATORY STEPS
FOR GP

* Determining the set of terminals
« Determining the set of functions
e Determining the fithess measure
* Determining the parameters
 population size
* number of generations
e other minor parameters
e Determining the method for designating a
result and the criterion for terminating a run

Terminal Set —9»
Function Set —#»>
Fitness Measure —$»| GP _>A Computer
Parameters ———» Program

Termination gy
Criterion

10 FITNESS-CASES SHOWING THE
VALUE OF THE DEPENDENT
VARIABLE, D, ASSOCIATED WITH THE
VALUES OF THE SIX INDEPENDENT
VARIABLES, L, W,, H,, L,, W,, H,

Fitness|L, W, |H,|L, |W,|H.,|D
case

1 314|712 |5|3]|54
2 7 110/9 |10 3| 1| 600
3 10/9 |4 |8|1]| 6| 312
4 3195164 111
5 4 |3 12|76 |1]|-18
6 31319 |5|4|-171
7 5199|176 363
8 112193 /9|2|-36
9 2 16 |82 |6]|10 —-24
10 811|110 7| 5|1 45

SOLUTION USING GENETIC

PROGRAMMING WITHOUT

AUTOMATICALLY DEFINED
FUNCTIONS (ADFs)

(- (* (* WO LO) HO)
(* (* W1 L1) H1))

D = WO*LO*HO — W1*L1*H1

LO

AUTOMATICALLY DEFINED
FUNCTIONS

TOP-DOWN VIEW OF THREE STEP
HEIRARCHICAL PROBLEM-SOLVING

PROCESS
Decompose Solve Solve original
subproblems problem

Subproblem F———{ Solution to subproblem

Original] , Solution to
problem—> Subproblem 2 Solution to subproblerri—»original problen

Subproblem 3—— Solution to subproblem/

 Decompose a problem into subproblems

e Solve the subproblems

 Assemble the solutions of the subproblems
Into a solution for the overall problem

AN OVERALL COMPUTER PROGRAM
CONSISTING OF ONE FUNCTION-
DEFINING BRANCH AND ONE RESULT-
PRODUCING BRANCH

100%-CORRECT PROGRAM FOR THE
TWO-BOXES PROBLEM with ADFS

(progn
(defun volume (arg0 argl arg2)
(values

(* arg0 (* argl arg2))))

(values (- (volume LO WO HO)
(volume L1 W1 H1))))

(ARGO ARG1 ARG2

AUTOMATICALLY DEFINED
FUNCTIONS

BOTTOM-UP VIEW OF THREE STEP
HEIRARCHICAL PROBLEM-SOLVING

PROCESS
Identify Change
regularities representation

Original
representati
of the

First recoding rule

/

\

Solve

n—>

Second recoding ruk—»

problem

T~

Third recoding rule

New
representatio
of the
problem

|

/

e Identify regularities

« Change the representation

» Solve the overall problem

Solution to
problem

AFTER THE CHANGE OF
REPRESENTATION, THERE ARE TWO
NEW VARIABLES — V, ANDV,

Fitness|L, |W,|H, |L., |W,|H, |V, |V. |D
case

1 3141|7125/ 3/84 | 30| 54
2 7 110/9 |10 3| 1| 630 30| 600
3 1009 |4 |8|1| 6| 360 48| 312
4 319/5/1|/6|4]|135| 24| 111
5 4 (312|716 |1|24 | 42 | -18
6 313[1/9/5/4|9 180|-171
7 519119117 |6] 405 42 | 363
8 1219319218 | 54| -36
9 2 16 1826|1096 | 120 -24
10 8 11/107|5|1| 80| 35| 45

8 MAIN POINTS — AUTOMATICALLY
DEFINED FUNCTIONS

 ADFs work.

 ADFs do not solve problems in the style of
human programmers.

« ADFs reduce the computational effort
required to solve a problem.

« ADFs usually improve the parsimony of
the solutions to a problem.

 As the size of a problem is scaled up, the
size of solutions increases more slowly with
ADFs than without them.

 As the size of a problem is scaled up, the
computational effort required to solve a
problem increases more slowly with ADFs
than without them.

 The advantages in terms of computational
effort and parsimony conferred by ADFs
Increase as the size of the problem is scaled

up.

« Genetic programming can evolve the
architecture of the solution to a problem at
the same time that it solves a problem.

SIX MAJOR PREPARATORY STEPS FOR
GENETIC PROGRAMMING WITH
AUTOMATICALLY DEFINED
FUNCTIONS (ADFs)
» determining the set of terminals
« determining the set of functions
« determining the fithess measure
e determining the parameters
e population size
* number of generations
e other minor parameters
e determining the method for designating a
result and the criterion for terminating a run
* determining the architecture of the overall
program
 number of ADFs
« number of arguments possessed by each
ADF
 hierarchical references, if any, among the
ADFs

Terminal Set —P»
Function Set —#»
Fitness Measure—$»

Parameters ———P»

Termination >
Criterion

Architecture —9

GP L A Computer
Program

APPROACHES TO MEMORY, STATE,
AND MENTAL MODELS

! @

' ©0 04
m'l:l :
m[] 6,

ah ®® @ @

(A) (B) (C) (D)

« (A) Settable variables (enetic
Programming Koza 1992) using terminalsvO

and M1 and functions (SETMO X) and
(SETM1Y)

e (B) Indexed memory similar to linear
computer memory (Teller 1994) usindREAD

K) and(WRITE X K)

 (C) Memory isomorphic to world (Andre

1994)

« (D) Point-labeled, line-labeled directed
graphs (Brave 1995, 1996)

LANGDON'S DATA STRUCTURES
» Stacks

e Queues
o Lists
* Rings

ITERATION

e Four parts
e initialization branch
 termination branch
« work-performing branch
e update branch
* Problems
* nested iterations
« unsatisfiable termination predicates
 DU("Do Until") operation (GP-1)
e number of steps in an iteration
e number of iterations
 Restricted iteration (GP-2)
« Rationing dynamically created iterations
» Restricted Iteration Creation (RIC)
e Iteration Group Creation (IGC)

RESTRICTED ITERATION

Overall program consisting of an
automatically defined function ADFO, an
iteration-performing branch IPBO, and a
result-producing branch RPBQ

looping-over-
known-finite-se

Body of ADFO Body of Iteratio Body of Result>
Function Definitio Performing Branc Producing Branc
IPBO RPBO

FINDING THE ARCHITECTURE OF THE
AUTOMATICALLY DEFINED
FUNCTIONS

MANUAL METHODS

 prospective analysis of the problem

« seemingly sufficient capacity (over-
specification)

o affordable capacity

e retrospective analysis of the results of
actual runs

AUTOMATED METHODS

e evolutionary selection of the architecture
e evolution of architecture using architecture-
altering operations

POINT TYPING — STRUCTURE-
PRESERVING CROSSOVER -
ARCHITECTURALLY DIVERSE
POPULATION

Parent A with an argument map of {3, 2}
(progn)

@ D
RO CEROOMRCLARG) > Waed EOFLS (RGO ARS) > taiied e

100 107 115
CORD CNORD
101 104 108 112 116
CUANDS CAND D CADFO) &> (04 @OFD
102 103 105 106 109 110 111 113 114 118 119 120
@RGD @RGD (@ERGD GRGD (RGO ERGD (RGO GRGD @RGSO (00) (D) CORD

NEW ARCHITECTURE-ALTERING
OPERATORS

SPECIALIZATION — REFINEMENT —
CASE SPLITTING

e Branch duplication

« Argument duplication
e Branch creation

e Argument creation

GENERALIZATION

* Branch deletion
« Argument deletion

PROTEIN ALIGNMENT OF "A" AND "B"
PROTEINS

First.protein MRIKIFLVVLA VICLFAHYAS ASGMGGDKKP KDAPKPKDAP KPKEVKPVKA 50
Second.protein MRJKFLVVLA VICLLAHMAS ASGMGGDKKP KDAPKPKDAP KPKEVKPVKA 50
First.protein ESSEYEIEVI KHQKEKTEKK EKEKKTHV

T KKEVK KK QIPCSEKLHKID 100
El KKKIKNKEKK FVRPCSEILKD 100

= 111

Second.protein DSSEYEIEVI KHQKEKTEKK EKEKKAH
First.protein EKLOCETKG)V PAGYHAIFK N E-:_P DYEALPPPP GAKKDDKKEK 149
Second.protein EKILECEKNAT P-GYKALFHF KE ﬂC CPYEAI{--P GAKKDEKKEK 146

First.protein KTVHVWWKPPK EKPPKKLRKE CSGEKVIKFQ NCLVKIRGLI AFGDKTKNFD 199
Second.protein KVYKVIKRIPK EKPPKKPRKE CSGEKVIKFQ NCLVKIRGLI AFGDKTKNFD 196

n
=

JJ 11

First.protein KKFAKLVQGK QKKGAKKAKG GKKAARKPGP KPGHK-1--Q AD - 239
Second.protein KKFAKLVQGK QKKGAKKAKG GKKAEPKPGP KPAPKPGPK VPKPAD 246
First.protein --KDAK 244

Second.protein KPKDAKK 253

PROGRAM WITH 1 TWO-ARGUMENT

AUTOMATICALLY DEFINED FUNCTION
(ADFO) AND 1 RESULT-PRODUCING
BRANCH — ARGUMENT MAP OF {2}

42 ARGD (AND) 422 (0) @ (0) @DF) 487

482 483 486

PROGRAM WITH ARGUMENT MAP OF
{2, 2} CREATED USING THE OPERATION
OF BRANCH DUPLICATION

®) ®

590 591

PROGRAM WITH ARGUMENT MAP OF
{3) CREATED USING THE OPERATION
OF ARGUMENT DUPLICATION

690 691 696 697

PARALLELIZATION OF GA OR GP

 The computational burden of GA or GP is
concentrated In the task of measuring the
fitness for each fithess case for each
individual Iin the population for each
generation

e Time-consuming primitive functions

e Lengthy simulations

« Complicated state transition calculations

o Different initial conditions

» Series of probabilistic experiments

 However, not coupled

PARALLELIZATION OF GA OR GP

By individuals in the population
* Timing (Program size, Simulation time)

By fithess cases
e Timing (Simulation time, Protein length)
« Matching between hardware and problem

* By "Demes" ("Island" model)
* No synchronization of islands
e Occasional small amounts of migration (low
band width requirement for communication)
« Emigrants go (fithess-based selection)
 Immigrants arrive and are absorbed (fithess-
based making of space)
 Fault-tolerant

PARALLEL GA/GP SYSTEM

MESH MESH MESH

BOSS NODE ~_| NODE| | NODE
(Tram) ((Tram (Tram (Tram)

DEBUGGER MESH MESH

(Tram) g NODE| NobE| 2 | NopH
(Tram nil (Tram) (Tram >)

MESH MESH MESH

NODE| NODE| NODE|
(Tram (Tram) (Tram %

i

3 lines of 2-way communication exist within
the overall system
* between the Host and the Boss process,
e between the Boss process and all 64 (only 9
shown above) processing nodes of the
network, and
 between (toroidally) adjacent processing
nodes of the network.

THE FOUR INTER-COMMUNICATING
PROCESSES OF EACH OF THE 64
PROCESSING NODES

\\\\iff:?$

To Boss

BREEDER
\ —¢p- T0 North
//——>TO East

EXPORTER IMPORTER
_> To South

From South 4—/ \
From West Buffer Buffer To West

From North -@—

From East

NOVEL WAYS TO MEASURE FITNESS

 Evaluate fithess by operating a tethered
robot in actual environment for a certain
period of time (e.qg., 30 seconds)

« Evaluate fithess of electrical filter circuit by
connecting computer to a bread-board with
the circuit and collecting outputs for
particular inputs

e Evaluate fithess by using field-
programmable gate arrays (FPGA) to
process thousands (or millions) of fitness
cases (combinations of inputs) at very high
speed

« Laboratory experiments lasting a day or
longer for each fitness case of each
generation of a run

EVOLVABLE HARDWARE

RAPIDLY RECONFIGURABLE FIELD-
PROGRAMMABLE GATE ARRAYS

(FPGAS)

FUNCTION UNIT FOR ONE CELL OF
THE XILINX XC6216 CHIP

X1

}{E—Q 2

M3

25 Multipleser
RF Multiple-er o

| F—F

f——0 &

Clk— s E'_—|

clr

EVOLVABLE HARDWARE
RAPIDLY RECONFIGURABLE FIELD-
PROGRAMMABLE GATE ARRAYS

(FPGAS)

ONE CELL OF THE XILINX XC6216 CHIP

i LK.

TTTTTT

TZsmaez

Bl —u s h— B
i —d et
— M N4

Wéul | h— & & —d | Ev
o= F E—
h— F F —+o
& W i W
— :":ﬂ;? .
Ch MEE g M

EVOLVABLE HARDWARE
RAPIDLY RECONFIGURABLE FIELD-
PROGRAMMABLE GATE ARRAYS
(FPGAS)
SORTING NETWORKS

|
L

—0

EVOLVABLE HARDWARE

32x 64 PORTION OF THE XILINIX
XC6216 CHIP FOR SORTING
NETWORKS

W un Wun oue tut u

[(M} UuUy JUU ui u uu uu n

A 0t MMM OMUNN MO WD QMM W WG Ol MW MO ME VUMD O MO
I UUUU JUU U UOUD Buuu IJI:IC Duld Judu wuduwl vuwd dun-d

a U UL HUUU UO WD OUUY WOB UG Ul OWUOU WOWD uuud Owod

H rrLL N JUudb Udbod U UG aUYL UaUJY UaUe aUGU UaUed JuUG aLlat
L w ool UUUU UUUU UOWD DUy udwuy uouwld Judu wdud uowd OLdw
u tLun dUWdb Udbod o We b Uabd Wb aMdoal Uado JbUe dkal
[CF N Pl MU WU HUE Y HOW S WY WY O WY W W WO UuMblE 0w a]
' N I I T

rca le s v U UL HUUU UO WD JUUU UOWU WO WO OWMOU WUOWD uuud 0w ol
Vo oy UUUU JUU U UOUD JUuy oWy wodud ouduy wowo vuudd dLod
1za LTI | MMM MUN N MO MD MUY MOMY WO WD MO N WOME MMM Oe G
I 13 Ty UUUU JUUUUOUD Guu Ubuu uduld budu uiduwd uowd 0.0a
' [T W e e e T e T B T [T i e e W e i '

- " Lrpown UuUy JUU uouo duu UOUU UdUuld OUudU wudud uudd dwiod
TER RN MMM MU N N MO WD UMY MM WO WD MO N WD N M OwEd
fowen Fuw UUUU UUUU UOWD DUy udwuy uouwl Judu wduwd uowd duwod

'.q .H.H .H.H .H.H.H .H ﬂ.ﬂ .H.ﬂ .u .I'| H.H .H.ﬂ .H.H .H.ﬂ .H.ﬂ .u .I'| ﬂlﬂ .H.ﬂ .ﬂ.ﬂ .H.H i :
I_ 1 @ nnnnAnnnnAonp pARN nQ nAQ OANA AQAQ AAAQD ORAQR
B |FIlrrrnmnnnnonoonnnmadElone smonngnn nnng onan
'] @ nnnnnAnnnnPonp onnn nn nAQD OANA AOAQD AARD ORQ]
v P i i h i c e PRI TR Ve
o [5 2flanAp AApPAAeOAD PAAD AOAN AOAO PAOA AOAT ANAY OA 0
n LI AAANN ARAN AQNAQ AANN AQAN AQAQ AAQA AQAQ AAAQD QAR]
n ¢ b ha TPAP AMPAARAYT PAAP APANASAT PASAASAT APAT 2AOAN
n s rq nnnn AnNnN MTAN OANAN ANMAN ANRAND OAOR AAAD AAAD ORAD]
Vo T T e e T R T P i o R
[a] L = AAARN AAAA ADAA AAARN AQOARMN ADARD AARDMMA AAARD AAARD ODPARI]
L LI =1 TPAP AMPAARAYT PAAP APANASAT PASAASAT APAT 2AOAN
n crq oo AANAN ARANANAQD AANN AQAN AQAQ AAQA AQARD AAARD QAQRN
4] ¢ A 2] nPAP AMPAARAY AP APANASAT PAPAAPAT APAT 2700
Vo Pt e I R A T e
n I Al nnnn AnnRnRnnRpRD oRNN RORAN AORD DRADR ADRD RARD DRy
n [scffnnnNnNnARNNAQDAQD QAN AQMAN ANAQ OAQA AANQ AAAQD OAQA
n [dinfl "nrn ARR R ARAg DARARN MQAR QAR PR RQAR ARAR BRR Y
n 16 I LAAAN ARAN ANAD AANN AOAN AOAQD AAOR AOAD AAAND QRN

EVOLVABLE HARDWARE

IMPLEMENTATION OF (COMPARE-
EXCHANGE 2 5) IN TOP 6 CELLS OF

ONE 1x 16 VERTICAL COLUMN OF THE
XILINIX XC6216 CHIP FOR SORTING
NETWORKS

j—b—lzlﬁ-ﬂ-

=H_H+= -

[,

F{::::—mE'D -

= -

EVOLVABLE HARDWARE

RAPIDLY RECONFIGURABLE FIELD-
PROGRAMMABLE GATE ARRAYS
(FPGAS)

SORTING NETWORKS

* A 16-step 7-sorter was evolved that has two
fewer steps than the sorting network
described in O'Connor and Nelsons' patent
(1962) and that has the same number of steps
as the 7-sorter that was devised by Floyd and
Knuth subsequent to the patent and
described in Knuth 1973.

* Evolved reversible sorting networks for 4,
5, and 6 items for Mathemania contest.

IMPLEMENTATION OF GP IN
ASSEMBLY CODE — COMPILED
GENETIC PROGRAMMING SYSTEM
(PETER NORDIN 1994)
e Opportunity to speed up GP that is done by
slowly INTERPRETING GP program trees.
Instead of interpreting the GP program tree,
EXECUTE this sequence of assembly code.
e Can identify small set of primitive functions
that is useful for large group of problems,
such as+, -, *, % and also use some
conditional operations (FLTE) , some logical
functions (ANDQ OR XOR XNOR and perhaps
others (e.g.SRL, SLL, SETHI from Sun 4).
« Then, generate random sequence of
assembly code instructions at generation O
from this small set of machine code
Instructions (referring to certain registers).
 If ADFs are involved, generate fixed header
and footer of function and appropriate
function call.
« Perform crossover possibly so as to
preserve the integrity of subtrees. e« If ADFs

are involved, perform crossover so as to
preserve the integrity of the header and
footer of function and the function call.

DISCOVERY BY GENETIC
PROGRAMMING OF A CELLULAR
AUTOMATA RULE THAT IS BETTER
THAN ANY KNOWN RULE FOR THE
MAJORITY CLASSIFICATION
PROBLEM

Rule Accuracy Test cases

Best rule 76.9% 106
evolved by bit-
string genetic
algorithm (Das,
Mitchell, and
Crutchfield
1994)

GKL 1978 81.6% 106
human-written

Davis 1995 81.8% 106
human-written

Das 1995 82.178% 10/
human-written

Best rule 82.326% 10/
evolved by
genetic
programming
(in this paper)

Andre, David, Bennett Ill, Forrest H., and Koza, John R. 1996. Discovery by
genetic programming of a cellular automata rule that is better than any
known rule for the majority classification problem. In Koza, John R.,
Goldberg, David E., Fogel, David B., and Riolo, Rick L. (editors).

Genetic Programming 1996: Proceedings of the First Annual Conference,
July 28-31, 1996, Stanford UniversityCambridge, MA: The MIT Press.

THE SUCCESSION OF "BEST"
CELLULAR AUTOMATA RULES FOR
THE MAJORITY CLASSIFICATION
TASK, PRESENTED IN TRUTH TABLE
ORDER FROM 0000000 TO 1111111 (I.E. O
TO 127)

Rule State Transitions

00000000 01011111 00000000 01011111 00000000 01011111 00000000 01011111

G KL 1978 00000000 01011111 11111111 01011111 00000000 01011111 11111111 01011111

| 00000000 00101111 00000011 01011111 00000000 00011111 11001111 00011111

D aV I S 1 9 9 Eooooooooo 00101111 11111100 01011111 00000000 00011111 11111111 00011111
e

human-

written

00000111 00000000 00000111 11111111 00001111 00000000 00001111 11111111
00001111 00000000 00000111 11111111 00001111 00110001 00001111 11111111

Das (1995
human-

00000101 00000000 01010101 00000101 00000101 00000000 01010101 00000101

N

Best rulg|ee i st i ononiin
evolved by
genetic
programmi
ng (in this
paper)

TRANSMEMBRANE SEGMENT
IDENTIFICATION PROBLEM

« Goal is to classify a given protein segment
(l.e., a subsequence of amino acid residues
from a protein sequence) as being a
transmembrane domain or non-
transmembrane area of the protein (without
using biochemical knowledge concerning
hydrophobicity typically used by human-
written algorithms for this task).

« Four different versions of genetic
programming have been applied to this
problem. The performance of all four
versions using genetic programming IS
slightly superior to that of algorithms written
by knowledgeable human investigators.

Koza, John R. and Andre, David. 1996b. Evolution of iteration in genetic
programming. In Evolutionary Programming V: Proceedings of the
Fifth Annual Conference on Evolutionary Programming. Cambridge,
MA: MIT Press. In Press.

AUTOMATED DISCOVERY OF MOTIFS
IN PROTEIN DATABASES

o Genetic programming successfully evolved
motifs for detecting the D-E-A-D box family
of proteins and for detecting the manganese
superoxide dismutase family. Both motifs
were evolved without prespecifying their
length. Both evolved motifs employed
automatically defined functions to capture
the repeated use of common subexpressions.
The two genetically evolved consensus motifs
detect the two families either as well as, or
slightly better than, the comparable human-
written motifs found In the PROSITE
database.

Koza, John R. and Andre, David. 1996c¢. Automatic discovery of protein
motifs using genetic programming. In Yao, Xin (editor). 1996.
Evolutionary Computation: Theory and ApplicationsSingapore: World
Scientific. In Press.

COMPUTER USAGE
 Power PC 601 processor = 8 x T(Hertz
 times 64 = 5.12 x 19Dops/second
 times 86,400 sec. =4.4 x 10ops / day
e time 2 days = 105 ops
HUMAN BRAIN
e 1012 neurons operating at 16 per second =

1015 ops per second
1 bs =1050ps

PETAFLOPS COMPUTING INITIATIVE

1015 operations PER SECOND by 2010

AUTOMATED "WYWIWYG" DESIGN OF
ELECTRICAL CIRCUITS USING
GENETIC PROGRAMMING
* Filters
* Lowpass, highpass, bandpass LC filters
o Asymmetric passband Nielsen filter
» Crossover (woofer-tweeter) filter
» Crossover (woofer-midrange-tweeter)
« Matching Butterworth, Chebychev, elliptic
 Amplifiers (5 dB, 60 dB, 96 dB)
e Computational Circuits
e Squaring circuit
e Cubing circuit
e Square root circuit
e Cube root circuit
e Source Identification Problem
e Three-way
« Four-way (with changing environment)
e Circuit for time-optimal fly-to controller
 Temperature-sensing circuit
 VVoltage reference circuit

DIFFICULTY OF AUTOMATED CIRCUIT
DESIGN

* A very hard problem
e Exponential in the number of components
« More than 1600 circuits with a mere 20
components

e An important problem
* Too few analog designers
 There Is an "Egg-shell" of analog circuitry
around almost all digital circuits
 Analog circuits must be redesigned with
each new generation of process technology

* NO existing automated technigues
e In contrast with digital
« Existing analog techniques do only sizing of
components, but do no not create the topology

 In analog design, the search is for a
satisfactory circuit, but not necessarily an
optimal one

USE OF AUTOMATICALLY DEFINED
FUNCTIONS AND ARCHITECTURE-
ALTERING OPERATIONS IN THE
DESIGN OF ELECTRICAL CIRCUITS

 Automatically defined functions and
architecture-altering operations

 Two-Band Crossover (Woofer and Tweeter)
Filter (with ADFs and architecture-altering
operations)

» Lowpass filter (withADFs)
« Lowpass filter (with ADFs and
architecture-altering operations)
 Double-Bandpass Filter (withADFs and
architecture-altering operations) — "Comb"
filters

EMBRYO WITH TWO MODIFIABLE
WIRES Z0 AND Z1 AND CIRCUIT-
CONSTRUCTING PROGRAM TREE
(WITH TWO RESULT-PRODUCING
BRANCHES) WITH TWO WRITING
HEADS POINTING TO THE TWO
MODIFIABLE WIRES

 Embryonic electrical circuit

e Circuit-constructing program trees
« Component-creating functions
e Connection-creating functions

14 RLOAD =
Eﬁ?cm RCE
i

o FEZHD
L 4

DEVELOPMENT OF A CIRCUIT FROM A
CIRCUIT-CONSTRUCTING PROGRAM
TREE AND THE EMBRYONIC CIRCUIT

e Circuit-constructing program trees
« Component-creating functions
« Connection-creating functions
« Embryonic electrical circuit

Terminal Set —9»
Function Set —#»|
Fitness Measure—»
Parameters ——9»|

Termination > G P
Criterion

Architecture —®
Embryo —P

L A Computer
Program

EXAMPLE OF CIRCUIT-
CONSTRUCTING PROGRAM TREE

(LIST (C (- 0.963 (— (—-0.875
-0.113) 0.880)) (series (flip
end) (series (flip end) (L -
0.277 end) end) (L (—-0.640
0.749) (L -0.123 end)))) (flip
(nop (L -0.657 end)))))

L st

C- D4 SERIED 5 6 (NOP)

23 24 25 26 27 28 29 30 31

DEVELOPMENT OF A CIRCUIT

Developing Circuit

Constructing Program Tree
« Each function in the circuit-constructing
tree acts on a part of the circuit and changes
it In some way (e.g. creates a capacitor,
creates a parallel structure, adds a
connection to ground, etc)

A “writing head” points from each function
to the part of the circuit that the function will
act on.

« Each function inherits writing heads from
Its parent in the tree

RESULT OF THE C(2) FUNCTION
+ @ - 3 =

Z0UT

2

vouT

§ RSOURCE
4

1¢ 403@ T RLOADZ

+ WSOURCE

&

ZGND

O 4

(LIST (C(=0.963 (= (- -0.875

-0.113) 0.880)) (series (flip
end) (series (flip end) (L -

0.277 end) end) (L (—-0.640
0.749) (L -0.123 end)))) (flip
(nop (L -0.657 end)))))

NOTE: Interpretation of arithmetic value

RESULT OF THE FLIP (3) —IN 2nd
RESULT-PRODUCING BRANCH
_ @ + 3 o

2 ZOUT

VOuUT

- RLDAD;

+ MSOURCE

)

ZGND

0

4

(LIST (C (- 0.963 (— (—-0.875

-0.113) 0.880)) (series (flip

end) (series (flip end) (L -

0.277 end) end) (L (—-0.640

0.749) (L -0.123 end)))) (flip
(nop (L -0.657 end)))))

RESULT OF SERIES (5) FUNCTION
24— @ + 3 ”

ZoUT
vOUT
§ RSOURCE @“‘
403N

6
14 l RLDAD§
*+ WSOURCE o7
© 3@{
4

ZGND
0

(LIST (C (- 0.963 (— (—-0.875
-0.113) 0.880)) (series (flip
end) (series (flip end) (L -

0.277 end) end) (L (—-0.640

0.749) (L -0.123 end)))) (flip

(nop (L -0.657 end)))))

COMPONENT-CREATING FUNCTIONS
* ResistorR function
« Capacitor C function
e Inductor L function
* Diode D function
e Transistor QTO function
e Digital ANDOfunction
e Transformer TRANFORMER@Inction

A CIRCUIT CONTAINING A
MODIFIABLE WIRE Z0

£ J:HJ 12J: cd

1 - + 2
C53 L L CH

T11 13]

RESULT AFTER RFUNCTION

" :!:ll'.] IEJ: ca

1 — 2
IC3 4 C5

T 13]

RESULT AFTER QTOFUNCTION

10 12
cz L L ca

c3 L c5

CONNECTION-CREATING FUNCTIONS
 SERIES division function

 PSSand PSL parallel division functions

« STAR1division function

e TRIANGLE1division function

* VIAO function

 FLIP function

A CIRCUIT CONTAINING A RESISTOR

R1
e 110 2]
1 — s 2
i L C5
Ti 13]

AFTER THE SERIES FUNCTION

1 1
CQJ—G 2—!— Ca

@ ® ®
3 4
C3 - G5

Ta 13]

NETLIST WITH R1
R1 2 1 50hms

C2110
C3111
C4212

C5213

NETLIST AFTER SERIES FUNCTION
R1 2 4 50hms

643

R7 3 1 50hms
C2110
C3111
C4212
C5213

AFTER PSSPARALLEL DIVISION

1 1
CQ:!—O 24; C4

[- +

Ay

b o @

4 3

i

3 L — C5

Th 13]

AFTER PSL PARALLEL DIVISION

@l o 7l
N 3
T @,
— Ay 2
2(Z8
e L 1 c5
T 15]

AFTER VIAO FUNCTION

ch:m 12:|L_C4

, @ |,
3

3 L L €5

T 13]

A CIRCUIT CONTAINING A DIODE D1

o J:HJ 12J: cd

1 — + 2

C3 -

T11 13]
AFTER THE FLIP FUNCTION

c2 L' 1 ca

Co

1 t -y — 2

€3 L - C5

EVALUATION OF THE FITNESS OF A
CIRCUIT

+ IN——2—touT
Embryonic Circuit

Program Tree l

Fully Designed Circuit (NetGraph)

/

Circuit Netlist (ascii)

'

Circuit Simulator (SPICE)

/

Circuit Behavior (Output)

Fithess

BEHAVIOR OF A LOWPASS FILTER
VIEWED IN THE FREQUENCY DOMAIN

1.8 4r—mmm—m—m——— ™ s~ - m = - — - - - 1
I I

1
8.50-
1

2000Hz

1.68Hz 18Hz 186Hz 1.8KHz 18EHz 186KHz
o V{RLOAD:1)

 Examine circuit's behavior for each of 101
frequency values chosen over five decades of
frequency (from 1 Hz to 100,000 Hz) with
each decade divided into 20 parts (using a
logarithmic scale). The fithess measure
» does not penalize ideal values
* slightly penalizes acceptable deviations
 heavily penalizes unacceptable deviations
* Fitness is sunf(t) =[5 [W [FE)
« f(i) is the frequency of fithess case
«d(X) is the difference between the target and
observed values at frequency of fithess case

* W(y,X) is the weighting at frequenay

LOWPASS FILTER — CONTINUED

e 61 points in the 3-decade Iinterval from 1 Hz

to 1,000 Hz
* For voltage equaling the ideal value of 1.0
volts, the deviation i8.0
« For voltage between 970 and 1,000
millivolts, the absolute value of the deviation
from 1,000 millivolts is weighted by a factor
of 1.0
 For voltage less than 970 millivolts, the
absolute value of the deviation from 1,000
millivolts is weighted by a factor df0.0

35 points from 2,000 Hz to 100,000 Hz
* For voltage equaling the ideal value of 0.0
volts, the deviation i8.0
 For voltage between O millivolts and 1
millivolt, the absolute value of the deviation
from O millivolts is weighted by a factor of
1.0
 For voltage above 1 millvolt, the absolute
value of the deviation from 0 millivolts is
weighted by factor 010.0

« 5 "don't care" points between 1,000 Hz and
2,000 Hz

« Unsimulatable programs = 16 penalty

e Hits is number (0—101) of compliant points
(.e., those getting weight of 1.0)

EVALUATION OF THE FITNESS OF A
CIRCUIT

Set CIRCUIT
embryonic circuit

Evaluate individual
circuit-constructing program tree by
progressively applying component-
creating and connection-modifying

functions to the current CIRCUIT

Translate CIRCUIT

into NETLIST
Create SIMPLIFIED NETLIST by

removing wires, removing dangling
components, removing remaining
isolated subcircuits, inserting high-
resistance DC path to ground for
isolated nodes , and consolidating
series and parallel combinations of
like components

v

Run SPICE simulator on
SIMPLIFIED NETLIST to
create tabular values of
electrical behavior

End

DESIGN OF A LOWPASS FILTER
100%-COMPLIANT "7-RUNG LADDER"

5
r""\r"n,r""n,r""n, Lol ke F e T Ly Lo e i Tl 3
g L31 L25 L13 1 ZouT
1K 9.p8uH | 182000uH] 209000uH] 208000uH| 208000uH| 208000uH| 182000uH
SOURCE vouT
TAMSOURCE ¢15 1 co4 €33 - €27 & €15 L poa
86. lan znznr zﬂzan znzan zﬂzan znzan g6.1nF T RLOAD=
o
L zenp 4 1

100%-COMPLIANT "19-RUNG LADDER"

83. D-’IFT ZOZnFT ZOZnFT ZDZnFT ZDZnFT ZDZnFT ZDZnFT ZDZnFT ZDZnFT 2(]2-1F

[y T vt PN Vel H"'\-""\H"x-""\ H"x-""'\-"‘x ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ -""\-""'\-""\H"x e e,
L5 Li0 iy k83 ke e
16 Q88 1?BDDDU
1
+ RCE -::12 C67
/]

1 zeno 4

R F"\-""\F‘x-""\ -"'"\-""\ Lttt -"'"\-""'\-"‘x-""'\ e, -""\ i
L51 L53 L55 L5? L13
Zﬂm 1780000
C51 C53 -

C54 - C35 C57 C58 - Ci15 -
ZOZnFT ZOZnFT ZDZnFT ZDZnFT ZDZnFT ZDZnF]_ ZDZnFT 202‘nFT BSG’IF

B]
100%-COMPLIANT "BRIDGED T"
L5 L25 L31 L28 L14 3
2‘ T T e TV ST T
22400uH [229000uH 229000uH 229000uH 214000uH Z0uT
VOUT
§RSOURCE c3 c15
1K I} + I}
118nF
cig L L c33 118nF RLOAD
14 127nF 127nF Tk g
c30 L
127nF L11
+ VSOURCE 0.796uH
@
c27 L _C24 -C21 -C12
127nF 127n0F T127nF 10.338nF
ZGND
0
4 4 _

DESIGN OF A LOWPASS FILTER USING
AUTOMATICALLY DEFINED
FUNCTIONS (ADFs)

|_rv'\rv'\

l‘"\"\"\l‘“\ l‘"\l‘"\"\"\
35
D. 2‘n D. 2‘n H 11
L1 Li
gwsouru H
2 3
1
- C 3' 1_1 H - c? 1.15uH
1% 1238nl

@, Rt T 1gtef
(DEFUN ° ° ° 6 'm)

@ Qods S @R, @5 € €D
8 15 @ 13 14
(<= (P NERET
@@-@ @-@@@@-@-@-@ oD
@-p@- e ENDED €D @
@0@-@-@-0 DD

48 49 51

EDITED VERSION OF ADFO

SEDDUUH o8

SEO00uH % 0.11%nF
SB000uH
SE000uH
I_l'”‘v"“'.l‘“'v"“\J
1.15uH

EMBRYONIC CIRCUIT FOR A TWO-
BAND CROSSOVER (WOOFER AND
TWEETER) FILTER

DESIGN OF A TWO-BAND CROSSOVER
(WOOFER AND TWEETER) FILTER
BEST CIRCUIT OF GENERATIONS 0, 20,
AND 137

2 T T e ey 4
| LS ZOUTr 1
A4 FBuH
WHUT 1
RLOAD 1=
R=SOUR A T A e
1 D OO T A
S gs == L
. S5a450nF 6. SHBAF =
RLOAD2E
. uURCE O OH FA Ak
WOUT2
L&) ZoUuT>
ui =y =
2 L aas et " '3 -
L3 FOUT1
S583%uH
WORIT1
? R CAD T
RCE 15500 Q.00 §
1 O OO F e F e
L L
.
@ Moz =
Z18uH
_ | vSCuURCE g OO 7S
[et | WA T
o Q036 FuH 549(= =:pnl»_ IZO'UTZ
1 ps =
2 3 4
VYT T VY Y Ty T YT
L3 L70 L37 ZOUuT1
FFOuH 903uH 9O3uH
vouT1
z cer L _c78 L c5 L
17400nF | 17000nF | 9670nF | RLOADIZ
RSOURCE 0.00794k
, lo/0oradk
)
L css L L
+ 10300nF
o] L15 L2g 123/ RLOADZE
_ MSOURCE 244uH§ 244uH§ 655uH - 0.00794k
c4 c17 C27 VouT2
T
04 Lo} 1 1 ZOUT2 “w|
al 6 >

DESIGN OF A TWO-BAND CROSSOVER
(WOOFER AND TWEETER) FILTER
FREQUENCY DOMAIN BEHAVIOR OF
THE BEST CIRCUIT OF GENERATIONS
0, 20, AND 137

FREQUENCY DOMAIN BEHAVIOR OF
BUTTERWORTH FILTERS OF ORDER 3,
5, AND 7

111111

DESIGN OF A THREE-BAND
CROSSOVER (WOOFER-MIDRANGE-

TWEETER) FILTER
BEST CIRCUITS OF GENERATIONS 0, 54,

z e
s ZOUT1
SF40uH
wWOUT 1
;RSOURCE LES RLOAD 1
D.O0SFK 1270uH 1Z270uH (o Ne o 14
s 1
iy ZOUTZ s
T4 3360nF
ca1 =T C34 = wouTz=
O 142nF O 1 42nF oS RLOADZZ
. Z3nF O.008kK
rd =
O BRCGE 1 ZOUTS s
- 5270"55] mu@
2
- D - - — T T,
L3
81 30uH
ez c41 cz7 c39
s4m0022 | S55200nF 371{)an 3710nF
RSOURCE LG
D003 K 3 FfuH 1 L3>
- B5930uH
D Il - -
L4
o3 l
1+ B3 FuH AT " F Lod
CBZ — €55 — 620uH
102
Q. 147nF| O.147nF 13500nF
"
&2 -
- URCE SZ2F0nF VOUTS
1. 852
330uH RLOADS
OJ_ 0008k

DESIGN OF A THREE-BAND
CROSSOVER (WOOFER-MIDRANGE-
TWEETER) FILTER
FREQUENCY DOMAIN BEHAVIOR OF
THE BEST CIRCUIT OF GENERATIONS

0, 54, AND 174

GENETICALLY EVOLVED 5 DB
AMPLIFIER FROM GENERATION 45

2

qZn2323

83 R17
f? E.#Q?K "8
O3k

qinZFFrF

Eﬁ% Foa T 0. l?f.’l‘g

O\ﬁ:c

2 o 12, R85

Q

VSOURCE| 1k

+
C,EJ RSOURCE

30 !
e L

4%?'* |/ q2n2222
T
Ria

56
1Bak |

- Vee

021

qQIn2I2?
L

ALGAD
N

VOLTAGE GAIN STAGE

DARLINGTON EMITTER FOLLOWER

SECTION

o Wee

: j Q1
a71 q2n3333
qQInFIFF \—%@ wouTi
RLOAD
E

REDRAWN BEST-OF-GENERATION
GENETICALLY EVOLVED 5 DB
AMPLIFIER FROM GENERATION 45
SHOWING THE VOLTAGE GAIN STAGE
AND DARLINGTON EMITTER
FOLLOWER SECTION

q2n2222 Ve —
7 0_42“5 [

083
B Zli | WA o7l
R58 Q89 RE5 a42n2222
qZn2222 § 5.3K §Q_123K
a30 7.04K 7

2

Q21
qZn2222
L

RAZ? 704K u.w
[= L
1££IT1
+ &;;, IHCE J_RIRN_.
1k 457K
| - |~ q2n2222 -
Ay — Darlington RALOAD

- RSOURCE Rz74 Emitter- 8 g
0

188K Follower
| Stage

|Vo|tage Gain Stag|e

96 DB AMPLIFIER — BEST CIRCUIT OF
GENERATION 86

96 DB AMPLIFIER — BEST OF GENS 0, 42,
50, 86

o U{3)
13.850y-----------------"--"-"-"-"-"-"-""-"-""""—"—— - ==
SEL}}hxvfffqEHmwfffHE“xwxffﬁﬁhmwxffpﬁ“xwﬁffFﬂﬁ
138500+ - ERREEEEEEEEEEEEEE To-oo-o-
ds 2.08ms 4_8ms 5.08ms
o U{2)

o W{R13:1) + U{R9:2)
Time

96 DB AMPLIFIER — AC SWEEPS - BEST
OF GENS 0, 42, 50, 86

18@--------------------------------—o-om-ooo oo
| |
| |
1 i . i 1
| |
I I
I I
| |
| |

B+ ____________ | T T-T-TT=T=—7—~% T——=77 -
1.8Hz 188Hz 18KHz 1.8MHz
o 28=x1og18{ U(R13:1)/u(vB:+})
Frequency

L
|
|
|
|
I
i

ﬂ+ ___________ L r-—-——"-T-T7T77=7777% |
1.8Hz 188Hz 18KHz 1.8HHz
o 28=1log18{v{ri13:1)fu{uvb:+))
Frequency
1M8—----------"-"-"-"-"-— :
|] \I
| I
1 . . . 1
I 1
I 1
I)) 1
I 1
| : : : i
|
a+----------- e B T——=——---=-==-=- -———== !
1.8H=z 188Hz 18KHz 1.8MHz
o 28x1og18{U{R13:1)/u{uB:+]))
Frequency

19—------------------ s =
I |
I) - |
I |
I . . |
1 \:
1 I
1 . .

I |
1 . I
I |
I |
a+------——---—-- T-m——mm—m—— - B .
1.8Hz 188Hz 18KHz 1.8MHz

o 20*log18{v({3)/u{4))
Frequency

CUBE ROOT COMPUTATIONAL
CIRCUIT FROM GENERATIONS O, 17, 60

I B e R EE R e |
I I
i - TARGET i
| |
1 1
i QUTPUT i
| |
_1.ﬂJI' ______ b B b B aTTT==== :
-300mU -200my U 200nU

ouUTPUT
-TARGET

-200nU ou Z00mU
o pwr{v_u@,n.333333)*sgn{v_vB) - U(R6:1)
u_ue

CUBE ROOT COMPUTATIONAL
CIRCUIT - GENS 0, 17, 60

oSS FCAIT

Lo s
I
'
.
ﬂ
=]
¥

M 1
NEG1S EG13

RAT7
HEGIS AT1K
POYS15

-

3
515K NEG1S

OTHER COMPUTATIONAL CIRCUITS

e Square root circuit
e Sguaring circuit
e Cubing circuit

THREE-WAY SOURCE IDENTIFICATION
PROBLEM — GENERATIONS 0, 20, 106

R 1T
_:?LHF"EE L = Eitor
& | v ewoe T
E-L XIS O

THREE-WAY SOURCE IDENTIFICATION
PROBLEM — GENERATIONS 0, 20, 106

TIME-OPTIMAL FLY-TO PROBLEM
CASES 1 AND 2

Ay
(x3.y3)

® ()

TIME-OPTIMAL FLY-TO PROBLEM
CASE 4

TIME-OPTIMAL FLY-TO PROBLEM —
GENERATIONS 0 AND 31 (WITH NEAR-
OPTIMAL FITNESS OF 1.541 HOURS)

A
: _H_ i
——— B

—
I S 'E:-l_"u !
RIZ |
- az, |
Sl ETTEL S B S Ferea
e H=1Cees - MLy
— -
ST R I L o] L
L=
-1u_| TLL-
L

PROMISING GP APPLICATION AREAS

 Problem areas where a good approximate
solution (but not necessarily optimal
solution) Is satisfactory

 design

e control

e data mining

o forecasting

o classification

e image processing and computer vision

 Problem areas where discovery of the size
and shape of the solution is a major part of
the problem

 Problem areas involving many variables
whose inter-relationship i1s not well
understood

PROMISING GP APPLICATION AREAS —
CONTINUED

 Problem areas where programming by
hand is difficult

« parallel computers

* FPGAS

e cellular automata

e multi-agent strategies

o distributed Al
 Problem areas where large computerized
databases are accumulating and
computerized techniques are needed to
analyze the data

e genome and protein seguences

e astronomy

 petroleum

e marketing and financial databases

e satellite data

e weather

» World Wide Web

DIRECTIONS FOR FUTURE RESEARCH

 Strive for GP results in difficult, real-world
problems that typically require human
Intelligence to solve

 Strive for GP results that would be
publishable or commercially valuable in
their own right

* Design of complex structures

* Multi-agent strategies

e Data-mining

» Test script generation / IC testing

« EXxploiting mental models to solve problems
o Auto-parallelization

« Grammar induction

 Local operation algorithms

 Techniqgues for handling vectors, arrays,
and other complex data structures

« Assembly code approaches

» Evolvable hardware

e Digital Field Programmable Gate Arrays
(FPGA)
e Analog Field Programmable Analog Arrays
(FPAA)

DIRECTIONS FOR FUTURE RESEARCH
— CONTINUED

* Modularity
« Exploiting many levels of hierarchy
 Methods for dealing with large numbers of
ADFs
* Finding the right kind of parameterizable
modularity for different representations:
e Circuits, FPGA, Neural Programming

» Heuristic Exploration
» “Creep” operators for constants
 Interleaved methods of search - crossover,
simulated annealing
e Internal Reinforcement
e Smart Crossover
« Use statistics to guide reproductive
operations

 Meta-GP
e Automatically tweak the knobs
 Variable operator percentages
 Variable population size

e Issues of Typed GP

DIRECTIONS FOR FUTURE RESEARCH
— CONTINUED

e Theory
« GP Schema theorem
* What make a problem difficult?
* Role of deceptiveness in GP
e Characterizing suitability of representations
for problems:
e Issue of introns
* Rate of exploration vs. rate of convergence
* Representations
e Dealing with sequences and matrices of data
* Trees vs. Linear vs. Graphical genomes
* Phenotype vs. Genotype
 Handley’s statistical computing zones
 Teller's image processing operators
« Memory usage

DIRECTIONS FOR FUTURE RESEARCH
— CONTINUED

e Long-term learning and transfer
e Goal is to evolve programs for more than a
single problem
« Seeding
 Noah operator -- seed next run with best of
previous
o Start over with new function set that
iIncludes ADFs from previous run
« Seed the population with either a hand
coded or evolved individual by including
multiple mutations as seed individuals
« Learn parameters for the run (such as
parameters for the grammar of tree creation)
and use from one run to the next

DIRECTIONS FOR FUTURE RESEARCH
— CONTINUED

 Solving multiple problems
 HOX gene
e Use same ADFs for multiple RPBs to solve
different problems, or to work together on a
single problem
e Solving multiple problems at the same time
might actually be easier, especially if there are
possible shared subroutines

e Learning to learn
* Evolving programs that learn
 Evolving programs that learn and use a
complex mental model
e Evolve a program that performs learning for
a neurologically plausible recurrent network
of neurons
 Explore the Baldwin effect with respect to
evolving learning

7 GP BOOKS AND VIDEOTAPES
e Koza, John R. Genetic Programming: On
Programming Computers by Means of Natural
Selection Cambridge, MA: MIT Press 1992.
 Koza, John R. and Rice, James Rsenetic
Programming: The Movie Cambridge, MA:
MIT Press 1992. (VHS NTSC, PAL,
SECAM)
» Kinnear, Kenneth E. Jr. (editor). Advances
In Genetic Programming Cambridge, MA:
MIT Press 1994.
« Koza, John R. Genetic Programming II:
Automatic Discovery of Reusable Programs.
Cambridge, MA: MIT Press 1994.
 Koza, John R. Genetic Programming I
Videotape The Next Generation Cambridge,
MA: MIT Press 1994. (VHS in NTSC, PAL,
SECAM)
 Peter J. Angeline and Kinnear, Kenneth E.
Jr. (editors). 1996. Advances in Genetic
Programming 2 MIT Press.
 Koza, John R., Goldberg, David E., Fogel,
David B., and Riolo, Rick L. (editors).

Genetic Programming 1996: Proceedings of
the First Annual Conference, July 28-31,
1996, Stanford University Cambridge, MA:
MIT Press.

GENERAL BOOKS ON GENETIC
ALGORITHMS

* Goldberg, David E. Genetic Algorithms in
Search, Optimization, and Machine Learning
Reading, MA: Addison-Wesley 1989.

e Holland, John H. Adaptation in Natural and
Artificial Systems Ann Arbor, MI: University
of Michigan Press 1975. Now available as
2nd edition from The MIT Press 1992.

« Davis, Lawrence (editor). Genetic
Algorithms and Simulated Annealing
London: Pittman 1987.

 Davis, Lawrence. Handbook of Genetic
Algorithms Van Nostrand Reinhold.1991.

* Michalewicz, Zbignlew. Genetic Algorithms
+ Data Structures = Evolution Programs
Berlin: Springer-Verlag 1992.

« Mitchell, Melanie. 1996. An Introduction to
Genetic Algorithms Cambridge, MA: The
MIT Press.

GP CONFERENCE PROCEEDINGS

e Koza, John R., Goldberg, David E., Fogel,
David B., and Riolo, Rick L. (editors). 1996.
Genetic Programming 1996: Proceedings of
the First Annual Conference, July 28-31,
1996, Stanford University Cambridge, MA:
MIT Press.

« Koza, John R., Deb, Kalyanmoy, Dorigo,
Marco, Fogel, David B., Garzon, Max, Iba,
Hitoshi, and Riolo, Rick L. (editors). 1997.
Genetic Programming 1997: Proceedings of
the Second Annual Conference, July 13-16,
1997, Stanford University San Francisco,
CA: Morgan Kaufmann.

1997 CONFERENCES
e FEA-97 — March 3 — 5, 1997 — Research
Triangle Park, NC
o GP-97 — Stanford, July 13-16 (Su-W), 1997
E-MAIL: gp@aaail.org
WWW: www.genetic-
programming.org
e ICGA-97 — July 20 — 23, 1997 — East
Lansing, Michigan
 AAAI-97 — Providence, RI — July 27 — 31,
1997
« ECAL-97 - July 28 — 31, 1997, Brighton,
UK
 [JCAI-97—-Nagoya, Japan — August 24-29,
1997
« GALESIA-97, September 1997 - Glasgow

1998 CONFERENCES

« EP-98 —March 25-27 (W-F), 1998 — San
Diego
* ALIFE-98
« ICEC-98 — May 1998 — Archorage, Alaska
* FOGA-98 — Charlottesville, VA — July 18 —
21, 1998 (TENTATIVE!)
e GP-98 — Madison, Wisconsin — July 22-25
(W-Sa), 1998

E-MAIL: gp@aaail.org

WWW: www.genetic-

programming.org
 AAAI-98 — Madison, Wisconsin — July 26 -
30, 1998 (Su-Th)
* ICES-98 - Lausaune - Sept 24 - 26 (Th-Sa),
1998
« PPSN-98 — Amsterdam - Sept 27 - Oct 1
(Su-Th), 1998

1999 CONFERENCES
o [|JCAI-99 — Stockholm — July 31 - Aug 6,
1999

GP E-MAIL LISTS

GENETIC PROGRAMMING (GP) LIST

» To subscribe, send e-mail message to:
Genetic-Programming-
Request@CS.Stanford.Edu

e Be sure to send to exactly this address,
(which includes the word "Reguest")!
« The BODY of your message must consist of

exactly the words:
subscribe genetic-programming

SPECIAL BAY AREA GP LIST

(USED ONLY TO ANNOUNCE LOCAL GP
MEETINGS AND BAY AREA GP
LUNCHES)

» To subscribe, send e-mail message to:
BA-GP-Request@CS.Stanford.Edu

« Be sure to send to exactly this address,
(which includes the word "Reguest")!
« The BODY of your message must consist of

exactly the words:
subscribe BA-GP

JOHN KOZA'S HOME PAGE

http://www-Cs-
faculty.stanford.edu/~koza/

Contains
 Information on GP-96, GP-97, GP-98
conferences
e Links to people doing GP research
o List of PhD theses in progress
* Links to many other GP resources
» Abstracts of JK's publications
e Links to other GP WWW pages
e Links to Langdon's complete GP
bibliography

